A Role of CREB in BRCA1 Constitutive Promoter Activity and Aromatase Basal Expression
نویسندگان
چکیده
Aromatase is the rate-limiting enzyme in estrogen biosynthesis and a key target in breast cancer treatment. Its ovary-specific promoter, PII, is induced in response to protein kinase A (PKA) activation. It has been proposed that breast cancer susceptibility gene 1, BRCA1, is involved in negative regulation of aromatase PII activity. Surprisingly, inhibition of PKA pathway by inhibitor H89 elevates basal aromatase expression while abolishes cAMP-mediated aromatase induction in an ovarian granulosa cell line, KGN. In this report, we decipher the mechanism by which the PKA pathway negatively regulates aromatase basal expression. We show that PKA pathway plays a positive role in the expression of BRCA1. H89 effectively reduces endogenous BRCA1 mRNA levels as well as reporter gene expression from a BRCA1 promoter. Mutation of a cAMP-responsive element (CRE) in the BRCA1 promoter reduces BRCA1 expression. Chromatin immunoprecipitation (ChIP) shows that CRE-binding protein, CREB, binds to the BRCA1 promoter. Furthermore, knockdown of CREB in KGN cells leads to decreased BRCA1 level as well as elevated basal aromatase mRNA expression. These data demonstrate that both the CRE site in the BRCA1 promoter and CREB are required for BRCA1 constitutive expression. Our study suggests that PKA pathway exerts its negative impact on basal aromatase expression indirectly by contributing to the constitutive expression of BRCA1.
منابع مشابه
Functional interactions, phosphorylation, and levels of 3',5'-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells.
The proximal promoter of the rat aromatase CYP19 gene contains two functional regions that, by 5'-deletion analyses, have been shown to confer hormone/ cAMP inducibility to chimeric genes in primary cultures of rat granulosa cells and constitutive expression in R2C Leydig cells. Promoter region A binds Steroidogenic Factor-1 (SF-1); region B binds cAMP-regulatory element binding protein (CREB) ...
متن کاملTumor suppressor BRCA1 inhibits a breast cancer-associated promoter of the aromatase gene (CYP19) in human adipose stromal cells.
Adipose tissue provides an important extragonadal source of estrogen. Obesity-associated elevation of estrogen production increases risk of breast cancer in postmenopausal women. Aromatase (CYP19), which converts androgen to estrogen, is a key enzyme in estrogen biosynthesis. In normal adipose tissue, transcription of the aromatase gene is initiated from a relatively weak adipose-specific promo...
متن کاملEnhanced expression of aromatase in p53-inactivated mammary epithelial cells.
Both the functional loss of p53 and the overexpression of aromatase are important for the progression of breast cancer in postmenopausal women. Here, we found that aromatase expression was up-regulated in primary cultures of mammary epithelial cells (p53(Delta)(5,6) MEC) isolated from mice with a defect in exons 5 and 6 of the p53 gene. Aromatase basal activity and expression levels were signif...
متن کاملThe prostaglandin transporter regulates adipogenesis and aromatase transcription.
Cytochrome P450 aromatase, encoded by the CYP19 gene, catalyzes estrogen synthesis. In obese postmenopausal women, increased estrogen synthesis in adipose tissue has been linked to hormone-dependent breast carcinogenesis. Hence, it is important to elucidate the mechanisms that regulate CYP19 gene expression. Prostaglandin E(2) (PGE(2)) stimulates the cyclic AMP (cAMP) → protein kinase A (PKA) →...
متن کاملPioglitazone, a PPARg Agonist, Suppresses CYP19 Transcription: Evidence for Involvement of 15-Hydroxyprostaglandin Dehydrogenase and BRCA1
Estrogen synthesis is catalyzed by cytochrome P450 aromatase, which is encoded by the CYP19 gene. In obese postmenopausal women, increased aromatase activity in white adipose tissue is believed to contribute to hormone-dependent breast cancer. Prostaglandin E2 (PGE2) stimulates the cAMP!protein kinase A (PKA) pathway leading to increased CYP19 transcription and elevated aromatase activity in in...
متن کامل